skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Grisanti, Nick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Rocha, A.P.; Steels, L.; van den Herik, J. (Ed.)
    Previous work has shown that artificial agents with the ability to discern function from structure (intention perception) in simple combinatorial machines possess a survival advantage over those that cannot. We seek to examine the strength of the relationship between structure and function in these cases. To do so, we use genetic algorithms to generate simple combinatorial machines (in this case, traps for artificial gophers). Specifically, we generate traps both with and without structure and function, and examine the correlation between trap coherence and lethality, the capacity of genetic algorithms to generate lethal and coherent traps, and the information resources necessary for genetic algorithms to create traps with specified traits. We then use the traps generated by the genetic algorithms to see if artificial agents with intention perception still possess a survival advantage over those that do not. Our findings are two-fold. First, we find that coherence (structure) is much harder to achieve than lethality (function) and that optimizing for one does not beget the other. Second, we find that agents with intention perception do not possess strong survival advantages when faced with traps generated by a genetic algorithm. 
    more » « less
  2. Does structure dictate function and can function be reliably inferred from structure? Previous work has shown that an artificial agent’s ability to detect function (e.g., lethality) from structure (e.g., the coherence of traps) can confer measurable survival advantages. We explore the link between structure and function in simple combinatorial machines, using genetic algorithms to generate traps with structure (coherence) and no function (no lethality), generate traps with function and no structure, and generate traps with both structure and function. We explore the characteristics of the algorithmically generated traps, examine the genetic algorithms’ ability to produce structure, function, and their combination, and investigate what resources are needed for the genetic algorithms to reliably succeed at these tasks. We find that producing lethality (function) is easier than producing coherence (structure) and that optimizing for one does not reliably produce the other. 
    more » « less